Consider N balls initially placed in L bins. At each time step take a ball from each non-empty bin and randomly reassign all the balls into the bins. We call this finite Markov chain General Repeated Balls into Bins process. It is a discrete time conservative interacting particles system with parallel updates. Assuming a quantitative chaotic condition on the reassignment rule we prove a quantitative propagation of chaos for this model. We furthermore study some equilibrium properties of the limiting nonlinear process.
Propagation of chaos for a general balls into bins dynamics
Nicoletta Cancrini
Membro del Collaboration Group
;
2021-01-01
Abstract
Consider N balls initially placed in L bins. At each time step take a ball from each non-empty bin and randomly reassign all the balls into the bins. We call this finite Markov chain General Repeated Balls into Bins process. It is a discrete time conservative interacting particles system with parallel updates. Assuming a quantitative chaotic condition on the reassignment rule we prove a quantitative propagation of chaos for this model. We furthermore study some equilibrium properties of the limiting nonlinear process.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
21-EJP590-2.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Dominio pubblico
Dimensione
275.46 kB
Formato
Adobe PDF
|
275.46 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.