We consider the symmetric exclusion process on the d-dimensional lattice with initial data invariant with respect to space shifts and ergodic. It is then known that as t diverges the distribution of the process at time t converges to a Bernoulli product measure. Assuming a summable decay of correlations of the initial data, we prove a quantitative version of this convergence by obtaining an explicit bound on the Ornstein d-distance. The proof is based on the analysis of a two species exclusion process with annihilation.

Quantitative ergodicity for the symmetric exclusion process with stationary initial data

Cancrini N.
Membro del Collaboration Group
;
2021-01-01

Abstract

We consider the symmetric exclusion process on the d-dimensional lattice with initial data invariant with respect to space shifts and ergodic. It is then known that as t diverges the distribution of the process at time t converges to a Bernoulli product measure. Assuming a summable decay of correlations of the initial data, we prove a quantitative version of this convergence by obtaining an explicit bound on the Ornstein d-distance. The proof is based on the analysis of a two species exclusion process with annihilation.
File in questo prodotto:
File Dimensione Formato  
21-ECP421-1.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Dominio pubblico
Dimensione 364.05 kB
Formato Adobe PDF
364.05 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/176694
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact