In the global landscape of neutrinoless double beta (0νββ) decay search, the use of semiconductor germanium detectors provides many advantages. The excellent energy resolution, the negligible intrinsic radioactive contamination, the possibility of enriching the crystals up to 88% in the76Ge isotope as well as the high detection efficiency, are all key ingredients for highly sensitive 0νββ decay search. The MAJORANA and GERDA experiments successfully implemented the use of germanium (Ge) semiconductor detectors, reaching an energy resolution of 2.53 ± 0.08 keV at the Qββ and an unprecedented low background level of 5.2 × 10−4 cts/(keV·kg·yr), respectively. In this paper, we will review the path of 0νββ decay search with Ge detectors from the original idea of E. Fiorini et al. in 1967, to the final recent results of the GERDA experiment setting a limit on the half-life of76Ge 0νββ decay at T1/2 > 1.8 × 1026 yr (90% C.L.). We will then present the LEGEND project designed to reach a sensitivity to the half-life up to 1028 yr and beyond, opening the way to the exploration of the normal ordering region.

Neutrinoless double beta decay with germanium detectors: 1026 yr and beyond

D'andrea V.;Macolino C.;Salamida F.;
2021-01-01

Abstract

In the global landscape of neutrinoless double beta (0νββ) decay search, the use of semiconductor germanium detectors provides many advantages. The excellent energy resolution, the negligible intrinsic radioactive contamination, the possibility of enriching the crystals up to 88% in the76Ge isotope as well as the high detection efficiency, are all key ingredients for highly sensitive 0νββ decay search. The MAJORANA and GERDA experiments successfully implemented the use of germanium (Ge) semiconductor detectors, reaching an energy resolution of 2.53 ± 0.08 keV at the Qββ and an unprecedented low background level of 5.2 × 10−4 cts/(keV·kg·yr), respectively. In this paper, we will review the path of 0νββ decay search with Ge detectors from the original idea of E. Fiorini et al. in 1967, to the final recent results of the GERDA experiment setting a limit on the half-life of76Ge 0νββ decay at T1/2 > 1.8 × 1026 yr (90% C.L.). We will then present the LEGEND project designed to reach a sensitivity to the half-life up to 1028 yr and beyond, opening the way to the exploration of the normal ordering region.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/177898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact