In this paper, we study linear parabolic equations on a finite oriented star-shaped network; the equations are coupled by transmission conditions set at the inner node, which do not impose continuity on the unknown. We consider this problem as a parabolic approximation of a set of the first-order linear transport equations on the network, and we prove that when the diffusion coefficient vanishes, the family of solutions converges to the unique solution to the first-order equations satisfying suitable transmission conditions at the inner node, which are determined by the parameters appearing in the parabolic transmission conditions.

Vanishing viscosity approximation for linear transport equations on finite star-shaped networks

Guarguaglini F. R.;
2021

Abstract

In this paper, we study linear parabolic equations on a finite oriented star-shaped network; the equations are coupled by transmission conditions set at the inner node, which do not impose continuity on the unknown. We consider this problem as a parabolic approximation of a set of the first-order linear transport equations on the network, and we prove that when the diffusion coefficient vanishes, the family of solutions converges to the unique solution to the first-order equations satisfying suitable transmission conditions at the inner node, which are determined by the parameters appearing in the parabolic transmission conditions.
File in questo prodotto:
File Dimensione Formato  
JEEQ-D-20-00250.pdf

solo utenti autorizzati

Descrizione: articolo spedito alla rivista
Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 768.73 kB
Formato Adobe PDF
768.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Guarguaglini-Natalini2021_Article_VanishingViscosityApproximatio.pdf

solo utenti autorizzati

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 623.8 kB
Formato Adobe PDF
623.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/179575
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact