Gold-nanoparticle (AuNP)-conjugated drugs represent a promising and innovative antitumor therapeutic approach. In our study, we describe the design, the synthesis, the preparation, and the characterization of AuNPs conjugated with the pyrazolo[3,4-d]pyrimidine derivative SI306, a c-Src inhibitor. AuNPs-SI306 showed a good loading efficacy (65%), optimal stability in polar media and in human plasma, and a suitable morphological profile: a ζ-potential of -43.9 mV, a nanoparticle diameter of 48.6 nm, and a 0.441 PDI value. The antitumoral activity of AuNPs-SI306 was evaluated in vitro in the glioblastoma model, by the low-density growth assay, and also in combination with radiotherapy (RT). Results demonstrated that AuNPs had a basal radiosensitization ability and that AuNPs-SI306, when used in combination with RT, were more effective in inhibiting tumor cell growth with respect to AuNPs and free SI306.

AuNP Pyrazolo[3,4- d]pyrimidine Nanosystem in Combination with Radiotherapy against Glioblastoma

Gravina G. L.;Angelucci A.;
2020-01-01

Abstract

Gold-nanoparticle (AuNP)-conjugated drugs represent a promising and innovative antitumor therapeutic approach. In our study, we describe the design, the synthesis, the preparation, and the characterization of AuNPs conjugated with the pyrazolo[3,4-d]pyrimidine derivative SI306, a c-Src inhibitor. AuNPs-SI306 showed a good loading efficacy (65%), optimal stability in polar media and in human plasma, and a suitable morphological profile: a ζ-potential of -43.9 mV, a nanoparticle diameter of 48.6 nm, and a 0.441 PDI value. The antitumoral activity of AuNPs-SI306 was evaluated in vitro in the glioblastoma model, by the low-density growth assay, and also in combination with radiotherapy (RT). Results demonstrated that AuNPs had a basal radiosensitization ability and that AuNPs-SI306, when used in combination with RT, were more effective in inhibiting tumor cell growth with respect to AuNPs and free SI306.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/182252
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact