Bisphenol A (BPA), the main chemical monomer of epoxy resins and polycarbonate plastics, has generated concerns about its endocrine disruptor properties, along with the reported possible links with several human health disorders. Accordingly, some restrictions on its use have been recommended. Bisphenol S (BPS) and bisphenol F (BPF) are the main replacements to BPA, with which they share homologies in chemical structure. However, to date, little is known about their possible adverse effects for human reproduction. As the in vitro exposure of human spermatozoa to BPA induces oxidative/pro-apoptotic effects, the aim of the present study was to verify whether BPS and BPF could represent safer compounds for human sperm functions. The exposure of motile sperm suspensions to scalar concentrations of BPS or BPF for 4 h did not significantly reduce sperm motility (as assessed by computer-aided semen analysis) and viability. At flow cytometry, no changes in mitochondrial membrane potential, or mitochondrial generation of reactive oxygen species were detected by using the JC-1 and MitoSOX red probes, respectively. Interestingly, it nor even the combination of both BPS and BPF at the highest concentrations impaired sperm mitochondrial functions. In conclusion, BPS and BPF seem to be safer alternatives to BPA for sperm biology, as they do not affect mitochondrial functions, sperm motility and viability. These findings could help regulatory agencies to identify more secure chemicals to replace BPA in industrial production of plastics.

Effects of bisphenol S and bisphenol F on human spermatozoa: An in vitro study

Castellini C.;D'Andrea S.;Parisi A.;Totaro M.;Francavilla S.;Francavilla F.;Barbonetti A.
2021

Abstract

Bisphenol A (BPA), the main chemical monomer of epoxy resins and polycarbonate plastics, has generated concerns about its endocrine disruptor properties, along with the reported possible links with several human health disorders. Accordingly, some restrictions on its use have been recommended. Bisphenol S (BPS) and bisphenol F (BPF) are the main replacements to BPA, with which they share homologies in chemical structure. However, to date, little is known about their possible adverse effects for human reproduction. As the in vitro exposure of human spermatozoa to BPA induces oxidative/pro-apoptotic effects, the aim of the present study was to verify whether BPS and BPF could represent safer compounds for human sperm functions. The exposure of motile sperm suspensions to scalar concentrations of BPS or BPF for 4 h did not significantly reduce sperm motility (as assessed by computer-aided semen analysis) and viability. At flow cytometry, no changes in mitochondrial membrane potential, or mitochondrial generation of reactive oxygen species were detected by using the JC-1 and MitoSOX red probes, respectively. Interestingly, it nor even the combination of both BPS and BPF at the highest concentrations impaired sperm mitochondrial functions. In conclusion, BPS and BPF seem to be safer alternatives to BPA for sperm biology, as they do not affect mitochondrial functions, sperm motility and viability. These findings could help regulatory agencies to identify more secure chemicals to replace BPA in industrial production of plastics.
File in questo prodotto:
File Dimensione Formato  
BPS & BPF.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/182297
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact