A homogeneous continuous viscoelastic beam, describing the dynamics of a base-isolated tower, exposed to a uniformly distributed turbulent wind flow, is studied. The beam is constrained at the bottom end by a nonlinear viscoelastic device, and it is free at the top end. Aeroelastic forces are computed by the quasi-static theory. The steady component of wind is responsible for a Hopf bifurcation, and the turbulent component induces parametric excitation. The interaction between the two bifurcations is investigated. Critical and post-critical behavior is analyzed by perturbation methods. The mechanical performances of the structure are discussed to assess the effectiveness of the viscoelastic isolation system.

Nonlinear dynamics of a base-isolated beam under turbulent wind flow

Di Nino S.;Luongo A.
2022

Abstract

A homogeneous continuous viscoelastic beam, describing the dynamics of a base-isolated tower, exposed to a uniformly distributed turbulent wind flow, is studied. The beam is constrained at the bottom end by a nonlinear viscoelastic device, and it is free at the top end. Aeroelastic forces are computed by the quasi-static theory. The steady component of wind is responsible for a Hopf bifurcation, and the turbulent component induces parametric excitation. The interaction between the two bifurcations is investigated. Critical and post-critical behavior is analyzed by perturbation methods. The mechanical performances of the structure are discussed to assess the effectiveness of the viscoelastic isolation system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/183550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact