We study branch structures in Grigorchuk–Gupta–Sidki groups (GGS-groups) over primary trees, that is, regular rooted trees of degree pn for a prime p. Apart from a small set of exceptions for p=2, we prove that all these groups are weakly regular branch over G′′. Furthermore, in most cases they are actually regular branch over γ3(G). This is a significant extension of previously known results regarding periodic GGS-groups over primary trees and general GGS-groups in the case n=1. We also show that, as in the case n=1, a GGS-group generated by a constant vector is not branch.
Titolo: | GGS-groups over primary trees: branch structures | |
Autori: | ||
Data di pubblicazione: | 2022 | |
Rivista: | ||
Handle: | http://hdl.handle.net/11697/184472 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
39468116-0444-44eb-b491-23d9c0f0ac16.pdf | full published version | Documento in Post-print | ![]() | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.