We consider a model of stress relaxation approximating the equations of elastodynamics. Necessary and sufficient conditions are derived for the model to be equipped with a global free energy and to have positive entropy production. The resulting class allows for both convex and non-convex equilibrium potentials. For convex equilibrium potentials, we prove a strong dissipation estimate and two relative energy estimates for: the relative entropy of the relaxation process and the modulated relative energy. Both give convergence results to smooth solutions. For polyconvex equilibrium potentials, an augmenting of the system of polyconvex elastodynamics and the null-Lagrangian structure suggest an appropriate notion of relative energy. We prove convergence of viscosity approximations to polyconvex elastodynamics in the regime where the limit solution remains smooth. A modulated relative energy is also obtained for the polyconvex case which shows stability of relaxation approximations

Structural properties of stress relaxation and convergence from viscoelasticity to polyconvex elastodynamics

LATTANZIO, CORRADO;
2006-01-01

Abstract

We consider a model of stress relaxation approximating the equations of elastodynamics. Necessary and sufficient conditions are derived for the model to be equipped with a global free energy and to have positive entropy production. The resulting class allows for both convex and non-convex equilibrium potentials. For convex equilibrium potentials, we prove a strong dissipation estimate and two relative energy estimates for: the relative entropy of the relaxation process and the modulated relative energy. Both give convergence results to smooth solutions. For polyconvex equilibrium potentials, an augmenting of the system of polyconvex elastodynamics and the null-Lagrangian structure suggest an appropriate notion of relative energy. We prove convergence of viscosity approximations to polyconvex elastodynamics in the regime where the limit solution remains smooth. A modulated relative energy is also obtained for the polyconvex case which shows stability of relaxation approximations
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/18746
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact