The thermoforming process is considered among the most promising manufacturing processes for delivering both high quality and volume of thermoplastic composite parts as it exploits all the principal advantages these materials provide. Nevertheless, a series of critical defects may be introduced during the process such as wrinkles, shear deformation of the textile, variation on the thickness as well as geometric distortions and residual stresses which are highly dependent on the material characteristics and the parameters of the process itself. In the present work presented is an analysis of these parameters and their influence on a simple semi-spherical geometry using finite element modelling. The results are also compared with actual experimental results.
Numerical and experimental analysis of the thermoforming process parameters of semi-spherical glass fibre thermoplastic parts
Stamopoulos A.
;Di Ilio A.
2021-01-01
Abstract
The thermoforming process is considered among the most promising manufacturing processes for delivering both high quality and volume of thermoplastic composite parts as it exploits all the principal advantages these materials provide. Nevertheless, a series of critical defects may be introduced during the process such as wrinkles, shear deformation of the textile, variation on the thickness as well as geometric distortions and residual stresses which are highly dependent on the material characteristics and the parameters of the process itself. In the present work presented is an analysis of these parameters and their influence on a simple semi-spherical geometry using finite element modelling. The results are also compared with actual experimental results.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.