In this chapter, the influence of the electrical and mechanical coupling on the dynamic response of an electrospun piezoelectric microfiber is investigated. Particular focus is given to the fiber response dependence on the applied voltage. A frequency shift of the order of 5-9% in resonance frequency is observed when the microfibers are actuated with an alternating field. It is believed that this observed shift toward higher frequencies is related to the increasing alignment of polar crystallites that probably increases the polymer stiffness. This result highlights the possibility of making materials characterized by tunable stiffness and resonance frequency.

Electromechanical Characterization of an Electrospun Piezoelectric Microfiber

Casalotti A.
Membro del Collaboration Group
;
Lanzara G.
Conceptualization
2020

Abstract

In this chapter, the influence of the electrical and mechanical coupling on the dynamic response of an electrospun piezoelectric microfiber is investigated. Particular focus is given to the fiber response dependence on the applied voltage. A frequency shift of the order of 5-9% in resonance frequency is observed when the microfibers are actuated with an alternating field. It is believed that this observed shift toward higher frequencies is related to the increasing alignment of polar crystallites that probably increases the polymer stiffness. This result highlights the possibility of making materials characterized by tunable stiffness and resonance frequency.
978-3-030-34723-9
978-3-030-34724-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/187811
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact