The de-embedding is a technique used in radio frequency and signal integrity measurements to extract the scattering (S)-parameters of the device under test (DUT) from the measured data of a global assembly and based on known S-parameters of the left and right test fixtures; thus, it removes the impact of the text fixtures used for the connection of the DUT to the instrumentation. Once the S-parameters are measured, the de-embedding is performed by a multistep approach involving the bidirectional transformation of the S-parameters into the corresponding transfer scattering (T)-parameters. The latter approach is well established for two and 4-port networks and has been recently expanded to the multiport case. This work proposes an alternative analytical formulation to de-embed a multiport device, knowing in advance only the S-parameters of the global multiport assembly and those of the test fixtures. The proposed method does not involve the S-to-T conversion and it requires only the algebraic manipulation of the S-parameter matrix elements; its practical implementation is very well fitted especially for multiport cases, and it is very fast in calculating the de-embedded DUT S-parameters for large port numbers. The results of the proposed formulation, applied to the case of a multipin high-speed connector, are compared with those obtained by measurement and simulations. Their accuracy is shown and discussed to demonstrate the validity of the proposed approach.
Generalized Analytical Formulation for De-Embedding of Multiport Devices Based on Known Fixtures
Francesco de Paulis
Formal Analysis
;Carlo OlivieriSoftware
;Antonio OrlandiConceptualization
2022
Abstract
The de-embedding is a technique used in radio frequency and signal integrity measurements to extract the scattering (S)-parameters of the device under test (DUT) from the measured data of a global assembly and based on known S-parameters of the left and right test fixtures; thus, it removes the impact of the text fixtures used for the connection of the DUT to the instrumentation. Once the S-parameters are measured, the de-embedding is performed by a multistep approach involving the bidirectional transformation of the S-parameters into the corresponding transfer scattering (T)-parameters. The latter approach is well established for two and 4-port networks and has been recently expanded to the multiport case. This work proposes an alternative analytical formulation to de-embed a multiport device, knowing in advance only the S-parameters of the global multiport assembly and those of the test fixtures. The proposed method does not involve the S-to-T conversion and it requires only the algebraic manipulation of the S-parameter matrix elements; its practical implementation is very well fitted especially for multiport cases, and it is very fast in calculating the de-embedded DUT S-parameters for large port numbers. The results of the proposed formulation, applied to the case of a multipin high-speed connector, are compared with those obtained by measurement and simulations. Their accuracy is shown and discussed to demonstrate the validity of the proposed approach.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.