Light-to-heat conversion in plasmonic nanoparticles (NPs) inside polymeric membranes is beneficial for improving the efficiency of membrane distillation for seawater desalination. However, the physical mechanisms ruling photothermal membrane distillation are unclear yet. Here, we model the plasmonic photothermal light-to-heat conversion from Ag, Au, and Cu nanofillers in polymeric membranes for membrane distillation. Photothermal effects in the cases of isolated metallic NPs and their assembly are investigated considering size effects and excitation sources. The increasing content of metallic NPs improves the efficiency of the light-to-heat conversion. For a polymeric membrane, filled with 25% Ag NPs, our model well reproduces the experimental temperature increase of 10 K. Specifically, we find that Ag NPs with a radius of around 30-40 nm are favorite candidates for membrane heating with excitation energy in the visible/near-UV range. The incorporation of a term associated with heat losses into the heat transfer equation well reproduces the cooling effect associated with vaporization at the membrane surface. Compared to Ag NPs, Au and Cu NPs show a broadened absorption cross section and their resonance has a nonlinear behavior with varying the excitation energy, better matching with sunlight radiation spectrum.

Photothermal response of plasmonic nanofillers for membrane distillation

Politano A.
Supervision
;
2020-01-01

Abstract

Light-to-heat conversion in plasmonic nanoparticles (NPs) inside polymeric membranes is beneficial for improving the efficiency of membrane distillation for seawater desalination. However, the physical mechanisms ruling photothermal membrane distillation are unclear yet. Here, we model the plasmonic photothermal light-to-heat conversion from Ag, Au, and Cu nanofillers in polymeric membranes for membrane distillation. Photothermal effects in the cases of isolated metallic NPs and their assembly are investigated considering size effects and excitation sources. The increasing content of metallic NPs improves the efficiency of the light-to-heat conversion. For a polymeric membrane, filled with 25% Ag NPs, our model well reproduces the experimental temperature increase of 10 K. Specifically, we find that Ag NPs with a radius of around 30-40 nm are favorite candidates for membrane heating with excitation energy in the visible/near-UV range. The incorporation of a term associated with heat losses into the heat transfer equation well reproduces the cooling effect associated with vaporization at the membrane surface. Compared to Ag NPs, Au and Cu NPs show a broadened absorption cross section and their resonance has a nonlinear behavior with varying the excitation energy, better matching with sunlight radiation spectrum.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/191429
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact