Layered semiconductors of the IIIA–VIA group have attracted considerable attention in (opto)electronic applications thanks to their atomically thin structures and their thickness-dependent optical and electronic properties, which promise ultrafast response and high sensitivity. In particular, 2D indium selenide (InSe) has emerged as a promising candidate for the realization of thin-film field effect transistors and phototransistors due to its high intrinsic mobility (>102 cm2 V−1 s−1) and the direct optical transitions in an energy range suitable for visible and near-infrared light detection. A key requirement for the exploitation of large-scale (opto)electronic applications relies on the development of low-cost and industrially relevant 2D material production processes, such as liquid phase exfoliation, combined with the availability of high-throughput device fabrication methods. Here, a β polymorph of indium selenide (β-InSe) is exfoliated in isopropanol and spray-coated InSe-based photodetectors are demonstrated, exhibiting high responsivity to visible light (maximum value of 274 A W−1 under blue excitation 455 nm) and fast response time (15 ms). The devices show a gate-dependent conduction with an n-channel transistor behavior. Overall, this study establishes that liquid phase exfoliated β-InSe is a valid candidate for printed high-performance photodetectors, which is critical for the development of industrial-scale 2D material-based optoelectronic devices.
Liquid Phase Exfoliated Indium Selenide Based Highly Sensitive Photodetectors
Politano A.;
2020-01-01
Abstract
Layered semiconductors of the IIIA–VIA group have attracted considerable attention in (opto)electronic applications thanks to their atomically thin structures and their thickness-dependent optical and electronic properties, which promise ultrafast response and high sensitivity. In particular, 2D indium selenide (InSe) has emerged as a promising candidate for the realization of thin-film field effect transistors and phototransistors due to its high intrinsic mobility (>102 cm2 V−1 s−1) and the direct optical transitions in an energy range suitable for visible and near-infrared light detection. A key requirement for the exploitation of large-scale (opto)electronic applications relies on the development of low-cost and industrially relevant 2D material production processes, such as liquid phase exfoliation, combined with the availability of high-throughput device fabrication methods. Here, a β polymorph of indium selenide (β-InSe) is exfoliated in isopropanol and spray-coated InSe-based photodetectors are demonstrated, exhibiting high responsivity to visible light (maximum value of 274 A W−1 under blue excitation 455 nm) and fast response time (15 ms). The devices show a gate-dependent conduction with an n-channel transistor behavior. Overall, this study establishes that liquid phase exfoliated β-InSe is a valid candidate for printed high-performance photodetectors, which is critical for the development of industrial-scale 2D material-based optoelectronic devices.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.