We prove that PG(2,8) does not contain minimal blocking sets of size 14. Using this result we prove that 58 is the largest size for a maximal partial spread of PG(3,8). This support the conjecture that q^2-q+2 is the largest size for a maximal partial spread of PG(3,q), q>7.
Minimal Blocking Sets in PG(2,8) and Maximal Partial Spreads in PG(3,8)
INNAMORATI, STEFANO;
2004-01-01
Abstract
We prove that PG(2,8) does not contain minimal blocking sets of size 14. Using this result we prove that 58 is the largest size for a maximal partial spread of PG(3,8). This support the conjecture that q^2-q+2 is the largest size for a maximal partial spread of PG(3,q), q>7.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.