We prove that PG(2,8) does not contain minimal blocking sets of size 14. Using this result we prove that 58 is the largest size for a maximal partial spread of PG(3,8). This support the conjecture that q^2-q+2 is the largest size for a maximal partial spread of PG(3,q), q>7.

Minimal Blocking Sets in PG(2,8) and Maximal Partial Spreads in PG(3,8)

INNAMORATI, STEFANO;
2004-01-01

Abstract

We prove that PG(2,8) does not contain minimal blocking sets of size 14. Using this result we prove that 58 is the largest size for a maximal partial spread of PG(3,8). This support the conjecture that q^2-q+2 is the largest size for a maximal partial spread of PG(3,q), q>7.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/19270
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact