The combination of time-dependent density functional theory (TDDFT) for the description of excited states with a hybrid quantum mechanics/molecular mechanics (QM/MM) approach enables the study of photochemical processes in complex environments. Here, we present a short overview of recent applications of TDDFT/ MM approaches to a variety of systems including studies of the optical properties of prototypical organic and inorganic molecules in gas phase and solution, photoinduced electron transfer reactions in donor-bridge-acceptor complexes, and in situ investigations of the molecular mechanisms of photoactive proteins. The application of TDDFT/MM techniques to a wide range of systems enables an assessment of the current performance and limitations of these methods for the characterization of photochemical processes in complex systems.

Quantum Mechanical/Molecular Mechanical (QM/MM) Car-Parrinello Simulations in Excited States

GUIDONI, Leonardo;
2005-01-01

Abstract

The combination of time-dependent density functional theory (TDDFT) for the description of excited states with a hybrid quantum mechanics/molecular mechanics (QM/MM) approach enables the study of photochemical processes in complex environments. Here, we present a short overview of recent applications of TDDFT/ MM approaches to a variety of systems including studies of the optical properties of prototypical organic and inorganic molecules in gas phase and solution, photoinduced electron transfer reactions in donor-bridge-acceptor complexes, and in situ investigations of the molecular mechanisms of photoactive proteins. The application of TDDFT/MM techniques to a wide range of systems enables an assessment of the current performance and limitations of these methods for the characterization of photochemical processes in complex systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/19312
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 34
social impact