We prove the absence of the Lavrentiev gap for non-autonomous functionals F(u) := integral(Omega) f(x, Du(x)) dx,where the density f(x, z) is alpha-Holder continuous with respect to x; x is an element of Omega subset of R^n; f satisfies the (p, q)-growth conditions |z|^p <= f(x, z) <= L (1 + |z|^q),where 1 < p < q < p(n+alpha)/n, and it can be approximated from below by suitable densities f_k.

No Lavrentiev gap for some double phase integrals

De Filippis, F;Leonetti, F
2022

Abstract

We prove the absence of the Lavrentiev gap for non-autonomous functionals F(u) := integral(Omega) f(x, Du(x)) dx,where the density f(x, z) is alpha-Holder continuous with respect to x; x is an element of Omega subset of R^n; f satisfies the (p, q)-growth conditions |z|^p <= f(x, z) <= L (1 + |z|^q),where 1 < p < q < p(n+alpha)/n, and it can be approximated from below by suitable densities f_k.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/193839
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact