The straightforward, continuous-flow synthesis of cyclopropyl carbaldehydes and ketones has been developed starting from 2-hydroxycyclobutanones and aryl thiols. This acid-catalyzed mediated procedure allows access to the multigram and easily scalable synthesis of cyclopropyl adducts under mild conditions, using reusable Amberlyst-35 as a catalyst. The resins, suitably ground and used for filling steel columns, have been characterized via TGA, ATR, SEM and BET analyses to describe the physical-chemical properties of the packed bed and the continuous-flow system in detail. To highlight the synthetic versatility of the arylthiocyclopropyl carbonyl compounds, a series of selective oxidation reactions have been performed to access sulfoxide and sulfone carbaldehyde cyclopropanes, oxiranes and carboxylic acid derivatives.

Continuous-Flow Synthesis of Arylthio-Cyclopropyl Carbonyl Compounds

Pesciaioli F.
;
2022-01-01

Abstract

The straightforward, continuous-flow synthesis of cyclopropyl carbaldehydes and ketones has been developed starting from 2-hydroxycyclobutanones and aryl thiols. This acid-catalyzed mediated procedure allows access to the multigram and easily scalable synthesis of cyclopropyl adducts under mild conditions, using reusable Amberlyst-35 as a catalyst. The resins, suitably ground and used for filling steel columns, have been characterized via TGA, ATR, SEM and BET analyses to describe the physical-chemical properties of the packed bed and the continuous-flow system in detail. To highlight the synthetic versatility of the arylthiocyclopropyl carbonyl compounds, a series of selective oxidation reactions have been performed to access sulfoxide and sulfone carbaldehyde cyclopropanes, oxiranes and carboxylic acid derivatives.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/195828
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact