We investigate spatial dislocation ordering of the solar structures associated with supergranulation and granulation scales. The supergranular and granular structures are automatically segmented from time-distance divergence maps and from broad-band images, respectively. The spatial dislocation ordering analysis is accomplished by applying the statistical method of Pair Correlation Function, (g)2(r), to segmented features in the solar fields. We compare the computed g(2)(r) functions obtained from both single and persistent, i.e., time-averaged, fields associated with supergranulation and granulation. We conclude that supergranulation and granulation patterns present a different topological order both in single and persistent fields. The analysis carried out on single fields suggests that the granulation behaves as an essentially random distribution of soft plasma features with a very broad distribution in size, while supergranulation behaves as a random distribution of close packed, coherent stiff features with a rather defined mean size.

Structure properties of supergranulation and granulation

PIETROPAOLO, Ermanno;
2004-01-01

Abstract

We investigate spatial dislocation ordering of the solar structures associated with supergranulation and granulation scales. The supergranular and granular structures are automatically segmented from time-distance divergence maps and from broad-band images, respectively. The spatial dislocation ordering analysis is accomplished by applying the statistical method of Pair Correlation Function, (g)2(r), to segmented features in the solar fields. We compare the computed g(2)(r) functions obtained from both single and persistent, i.e., time-averaged, fields associated with supergranulation and granulation. We conclude that supergranulation and granulation patterns present a different topological order both in single and persistent fields. The analysis carried out on single fields suggests that the granulation behaves as an essentially random distribution of soft plasma features with a very broad distribution in size, while supergranulation behaves as a random distribution of close packed, coherent stiff features with a rather defined mean size.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/19734
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 27
social impact