Electroencephalography (EEG) signals are considered one of the oldest techniques for detecting disorders in medical signal processing. However, brain complexity and the non-stationary nature of EEG signals represent a challenge when applying this technique. The current paper proposes new geometrical features for classification of seizure (S) and seizure-free (SF) EEG signals with respect to the Poincaré pattern of discrete wavelet transform (DWT) coefficients. DWT decomposes EEG signal to four levels, and thus Poincaré plot is shown for coefficients. Due to patterns of the Poincaré plot, novel geometrical features are computed from EEG signals. The computed features are involved in standard descriptors of 2‑D projection (STD), summation of triangle area using consecutive points (STA), as well as summation of shortest distance from each point relative to the 45-degree line (SSHD), and summation of distance from each point relative to the coordinate center (SDTC). The proposed procedure leads to discriminate features between S and SF EEG signals. Thereafter, a binary particle swarm optimization (BPSO) is developed as an appropriate technique for feature selection. Finally, k-nearest neighbor (KNN) and support vector machine (SVM) classifiers are used for classifying features in S and SF groups. By developing the proposed method, we have archived classification accuracy of 99.3 % with respect to the proposed geometrical features. Accordingly, S and SF EEG signals have been classified. Also, Poincaré plot of SF EEG signals has more regular geometrical shapes as compared to S group. As a final remark, we notice that the Poincaré plot of coefficients in S EEG signals has occupied more space as compared to SF EEG signals (Tab. 3, Fig. 11, Ref. 57). Text in PDF www.elis.sk Keywords: EEG signal, DWT, Poincaré plot, geometrical feature, BPSO, SVM, KNN.

Recognizing seizure using Poincaré plot of EEG signals and graphical features in DWT domain

Cicone A.;
2023-01-01

Abstract

Electroencephalography (EEG) signals are considered one of the oldest techniques for detecting disorders in medical signal processing. However, brain complexity and the non-stationary nature of EEG signals represent a challenge when applying this technique. The current paper proposes new geometrical features for classification of seizure (S) and seizure-free (SF) EEG signals with respect to the Poincaré pattern of discrete wavelet transform (DWT) coefficients. DWT decomposes EEG signal to four levels, and thus Poincaré plot is shown for coefficients. Due to patterns of the Poincaré plot, novel geometrical features are computed from EEG signals. The computed features are involved in standard descriptors of 2‑D projection (STD), summation of triangle area using consecutive points (STA), as well as summation of shortest distance from each point relative to the 45-degree line (SSHD), and summation of distance from each point relative to the coordinate center (SDTC). The proposed procedure leads to discriminate features between S and SF EEG signals. Thereafter, a binary particle swarm optimization (BPSO) is developed as an appropriate technique for feature selection. Finally, k-nearest neighbor (KNN) and support vector machine (SVM) classifiers are used for classifying features in S and SF groups. By developing the proposed method, we have archived classification accuracy of 99.3 % with respect to the proposed geometrical features. Accordingly, S and SF EEG signals have been classified. Also, Poincaré plot of SF EEG signals has more regular geometrical shapes as compared to S group. As a final remark, we notice that the Poincaré plot of coefficients in S EEG signals has occupied more space as compared to SF EEG signals (Tab. 3, Fig. 11, Ref. 57). Text in PDF www.elis.sk Keywords: EEG signal, DWT, Poincaré plot, geometrical feature, BPSO, SVM, KNN.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/199479
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 27
social impact