Hydrogel wound dressing makes easier the treatment of patients suffering from difficult wounds. A new process for the manufacturing of a sterile, packaged hydrogel wound dressing, based on an interpenetrating structure of calcium alginate, agar, and polyvinylpyrrolidone, was recently developed. The new formulation overtakes some previous technologies’ drawbacks expressing a better resistance to mechanical deformations compared to products on the market. In this work, the 2.35 T proton density, spin-lattice relaxation time, spin-spin relaxation time, phase-coherence relaxation, and water apparent diffusion coefficient analysis in the new hydrogel and several alternative formulations, including a commercial one (Neoheal®), are reported. Specifically, the combination of agar, acting as a thermolabile forming agent, with calcium alginate and γ irradiated polyvinylpyrrolidone, acting, respectively, as physical, and chemical crosslinking agents with an irreversible (temperature independent) effect, have been investigated. The new hydrogel formulation brings a qualitative improvement in its handling due to its increased mechanical stiffness when compared to the commercial hydrogel reference. This comes together with a reduced water content (100 vs. 112 for proton density in arbitrary units) and swelling capacity (88% vs. 124%) but with improved water mobility (1.42 vs. 1.34 × 10−3 mm2 s−1 for the apparent diffusion coefficient).
Characterization of a Novel Packaged Hydrogel Wound Dressing by 2.35 T Magnetic Resonance Imaging
Corradini V.;Di Censo D.;Alecci M.;Galante A.
2023-01-01
Abstract
Hydrogel wound dressing makes easier the treatment of patients suffering from difficult wounds. A new process for the manufacturing of a sterile, packaged hydrogel wound dressing, based on an interpenetrating structure of calcium alginate, agar, and polyvinylpyrrolidone, was recently developed. The new formulation overtakes some previous technologies’ drawbacks expressing a better resistance to mechanical deformations compared to products on the market. In this work, the 2.35 T proton density, spin-lattice relaxation time, spin-spin relaxation time, phase-coherence relaxation, and water apparent diffusion coefficient analysis in the new hydrogel and several alternative formulations, including a commercial one (Neoheal®), are reported. Specifically, the combination of agar, acting as a thermolabile forming agent, with calcium alginate and γ irradiated polyvinylpyrrolidone, acting, respectively, as physical, and chemical crosslinking agents with an irreversible (temperature independent) effect, have been investigated. The new hydrogel formulation brings a qualitative improvement in its handling due to its increased mechanical stiffness when compared to the commercial hydrogel reference. This comes together with a reduced water content (100 vs. 112 for proton density in arbitrary units) and swelling capacity (88% vs. 124%) but with improved water mobility (1.42 vs. 1.34 × 10−3 mm2 s−1 for the apparent diffusion coefficient).Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.