We prove the convergence of certain second-order numerical methods to weak solutions of the Navier–Stokes equations satisfying, in addition, the local energy inequality, and therefore suitable in the sense of Scheffer and Caffarelli–Kohn–Nirenberg. More precisely, we treat the space-periodic case in three space dimensions and consider a full discretization in which the classical Crank–Nicolson method (θ-method with θ= 1 / 2 ) is used to discretize the time variable. In contrast, in the space variables, we consider finite elements. The convective term is discretized in several implicit, semi-implicit, and explicit ways. In particular, we focus on proving (possibly conditional) convergence of the discrete solutions toward weak solutions (satisfying a precise local energy balance) without extra regularity assumptions on the limit problem. We do not prove orders of convergence, but our analysis identifies some numerical schemes, providing alternate proofs of the existence of “physically relevant” solutions in three space dimensions.

Convergence of second-order in time numerical discretizations for the evolution Navier-Stokes equations

Spirito S.
2022-01-01

Abstract

We prove the convergence of certain second-order numerical methods to weak solutions of the Navier–Stokes equations satisfying, in addition, the local energy inequality, and therefore suitable in the sense of Scheffer and Caffarelli–Kohn–Nirenberg. More precisely, we treat the space-periodic case in three space dimensions and consider a full discretization in which the classical Crank–Nicolson method (θ-method with θ= 1 / 2 ) is used to discretize the time variable. In contrast, in the space variables, we consider finite elements. The convective term is discretized in several implicit, semi-implicit, and explicit ways. In particular, we focus on proving (possibly conditional) convergence of the discrete solutions toward weak solutions (satisfying a precise local energy balance) without extra regularity assumptions on the limit problem. We do not prove orders of convergence, but our analysis identifies some numerical schemes, providing alternate proofs of the existence of “physically relevant” solutions in three space dimensions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/200680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact