In an interacting neutrino gas, flavor coherence becomes dynamical and can propagate as a collective mode. In particular, tachyonic instabilities can appear, leading to "fast flavor conversion" that is independent of neutrino masses and mixing angles. On the other hand, without neutrino-neutrino interaction, a prepared wave packet of flavor coherence simply dissipates by kinematical decoherence of infinitely many non-collective modes. We reexamine the dispersion relation for fast flavor modes and show that for any wavenumber, there exists a continuum of non-collective modes besides a few discrete collective ones. So for any initial wave packet, both decoherence and collective motion occurs, although the latter typically dominates for a sufficiently dense gas. We derive explicit eigenfunctions for both collective and non-collective modes. If the angular mode distribution of electron-lepton number crosses between positive and negative values, two non-collective modes can merge to become a tachyonic collective mode. We explicitly calculate the interaction strength for this critical point. As a corollary we find that a single crossing always leads to a tachyonic instability. For an even number of crossings, no instability needs to occur.
Fast neutrino flavor conversion: Collective motion vs. decoherence
Capozzi Francesco;
2019-01-01
Abstract
In an interacting neutrino gas, flavor coherence becomes dynamical and can propagate as a collective mode. In particular, tachyonic instabilities can appear, leading to "fast flavor conversion" that is independent of neutrino masses and mixing angles. On the other hand, without neutrino-neutrino interaction, a prepared wave packet of flavor coherence simply dissipates by kinematical decoherence of infinitely many non-collective modes. We reexamine the dispersion relation for fast flavor modes and show that for any wavenumber, there exists a continuum of non-collective modes besides a few discrete collective ones. So for any initial wave packet, both decoherence and collective motion occurs, although the latter typically dominates for a sufficiently dense gas. We derive explicit eigenfunctions for both collective and non-collective modes. If the angular mode distribution of electron-lepton number crosses between positive and negative values, two non-collective modes can merge to become a tachyonic collective mode. We explicitly calculate the interaction strength for this critical point. As a corollary we find that a single crossing always leads to a tachyonic instability. For an even number of crossings, no instability needs to occur.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.