In GR the static gravitational potential of a self-gravitating body goes as 1/r at large distances and any slower decrease leads to infinity energy. We show that in a class of four-dimensional massive gravity theories there exists spherically symmetric solutions with finite total energy, featuring an asymptotic behavior slower than 1/r and generically of the form $r^\gamma$. This suggests that configurations with nonstandard asymptotics may well turn out to be physical. The effect is due to an extra field coupled only gravitationally, which allows for modifications of the static potential generated by matter, while counterbalancing the apparently infinite energy budget.

Finite Energy of Black Holes in Massive Gravity

Nesti F;PILO, LUIGI
2011-01-01

Abstract

In GR the static gravitational potential of a self-gravitating body goes as 1/r at large distances and any slower decrease leads to infinity energy. We show that in a class of four-dimensional massive gravity theories there exists spherically symmetric solutions with finite total energy, featuring an asymptotic behavior slower than 1/r and generically of the form $r^\gamma$. This suggests that configurations with nonstandard asymptotics may well turn out to be physical. The effect is due to an extra field coupled only gravitationally, which allows for modifications of the static potential generated by matter, while counterbalancing the apparently infinite energy budget.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/20217
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact