We prove the existence of infinitely many homoclinic solutions for a class of second order Hamiltonian systems in R-N of the form q = q - W'(t,q), where we assume the existence of a sequence (t(n)) subset of R such that t(n) --> +/-infinity and W'(t + t(n),x) --> W'(t,x) as n --> +/-infinity for any (t,x) is an element of R x R-N. Moreover, under a suitable non degeneracy condition, we prove that this class of systems admits multibump solutions.
Utilizza questo identificativo per citare o creare un link a questo documento:
http://hdl.handle.net/11697/20256
Titolo: | Multiplicity of homoclinics for a class of time recurrent second order Hamiltonian systems. |
Autori: | |
Data di pubblicazione: | 1997 |
Rivista: | |
Abstract: | We prove the existence of infinitely many homoclinic solutions for a class of second order Hamiltonian systems in R-N of the form q = q - W'(t,q), where we assume the existence of a sequence (t(n)) subset of R such that t(n) --> +/-infinity and W'(t + t(n),x) --> W'(t,x) as n --> +/-infinity for any (t,x) is an element of R x R-N. Moreover, under a suitable non degeneracy condition, we prove that this class of systems admits multibump solutions. |
Handle: | http://hdl.handle.net/11697/20256 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.