The main aim of this paper is to give a positive answer to a question of Behrends, Geschke and Natkaniec regarding the existence of a connected metric space and a non-constant real-valued continuous function on it for which every point is a local extremum. Moreover we show that real-valued continuous functions on connected spaces such that every family of pairwise disjoint non-empty open sets is of size < |R| are constant provided that every point is a local extremum.
On metric spaces and local extrema
FEDELI, Alessandro;
2009-01-01
Abstract
The main aim of this paper is to give a positive answer to a question of Behrends, Geschke and Natkaniec regarding the existence of a connected metric space and a non-constant real-valued continuous function on it for which every point is a local extremum. Moreover we show that real-valued continuous functions on connected spaces such that every family of pairwise disjoint non-empty open sets is of size < |R| are constant provided that every point is a local extremum.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.