We establish that there are exactly 500 KTS(33)s admitting an automorphism group fixing one point and acting regularly on the remainder; 436 are over the cyclic group while 64 are over the dicyclic group. There are exactly 243 nonisomorphic STS(33)s underlying the above KTS(33)s; 211 are over the cyclic group while 32 are over the dicyclic group. This gives a significant improvement on the number of known KTS(33)s (at least 528 instead of at least 28).

The 1-rotational Kirkman triple systems of order 33

ZUANNI, FULVIO
2000

Abstract

We establish that there are exactly 500 KTS(33)s admitting an automorphism group fixing one point and acting regularly on the remainder; 436 are over the cyclic group while 64 are over the dicyclic group. There are exactly 243 nonisomorphic STS(33)s underlying the above KTS(33)s; 211 are over the cyclic group while 32 are over the dicyclic group. This gives a significant improvement on the number of known KTS(33)s (at least 528 instead of at least 28).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/20519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact