This paper concerns the design of passive base isolation systems characterized by a bilinear hysteretic behaviour. The study refers to the case where the structure to be isolated (superstructure) vibrates according to the rst mode. In this case the whole isolated structure can be modelled by a two-degree-of-freedom system. The base isolation effectiveness has been evaluated for different characteristics of the device, namely mass, strength, elastic and plastic stiffness, by using mainly energetic quantities. The optimum values for the base device have been obtained by minimizing the input energy and the displacement of the superstructure. Conclusions are drawn for superstructures with a fundamental period of 0.5 s, a damping ratio of 5% and for three different kinds of earthquake ground motions. The study showed that the seismic input greatly affects the behaviour of the isolated structure, and therefore the design ground motion must be carefully chosen, dependent on the characteristics of the site. A simple procedure that involves mainly linear dynamic analyses is proposed for the design of base devices used in conjunction with superstructures of any fundamental vibration period. The procedure produces good results in spite of its simplicity, and therefore it is suitable for practical use by design engineers.

Design of bilinear hysteretic isolation systems

FRAGIACOMO, Massimo;
2003-01-01

Abstract

This paper concerns the design of passive base isolation systems characterized by a bilinear hysteretic behaviour. The study refers to the case where the structure to be isolated (superstructure) vibrates according to the rst mode. In this case the whole isolated structure can be modelled by a two-degree-of-freedom system. The base isolation effectiveness has been evaluated for different characteristics of the device, namely mass, strength, elastic and plastic stiffness, by using mainly energetic quantities. The optimum values for the base device have been obtained by minimizing the input energy and the displacement of the superstructure. Conclusions are drawn for superstructures with a fundamental period of 0.5 s, a damping ratio of 5% and for three different kinds of earthquake ground motions. The study showed that the seismic input greatly affects the behaviour of the isolated structure, and therefore the design ground motion must be carefully chosen, dependent on the characteristics of the site. A simple procedure that involves mainly linear dynamic analyses is proposed for the design of base devices used in conjunction with superstructures of any fundamental vibration period. The procedure produces good results in spite of its simplicity, and therefore it is suitable for practical use by design engineers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/20586
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 26
social impact