For a spoace X, Clo(X) of a topological space X is the full subcategory of toplogical spaces and continuous functions generated by all finite powers X^n of X. We prove that for every cardinal number alfa there exists a space X such that Clon(X)=Clon(TMX) iff n<alfa and Clo(alfa)(X) is not isomorphic to Clo(alfa)(TMX), where TMX is the Tychonoff modification of X

Clone segments of the Tychonoff modification of space

TOZZI, Anna;
2000-01-01

Abstract

For a spoace X, Clo(X) of a topological space X is the full subcategory of toplogical spaces and continuous functions generated by all finite powers X^n of X. We prove that for every cardinal number alfa there exists a space X such that Clon(X)=Clon(TMX) iff n
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/20680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact