We define a family of generalizations of $\operatorname{SL}_2$-tilings to higher dimensions called $\boldsymbol{\epsilon}$-$\operatorname{SL}_2$-tilings. We show that, in each dimension 3 or greater, $\boldsymbol{\epsilon}$-$\operatorname{SL}_2$-tilings exist only for certain choices of $\boldsymbol{\epsilon}$. In the case that they exist, we show that they are essentially unique and have a concrete description in terms of odd Fibonacci numbers.

SL_2-Tilings Do Not Exist in Higher Dimensions (mostly)

Salvatore Stella
;
2018-01-01

Abstract

We define a family of generalizations of $\operatorname{SL}_2$-tilings to higher dimensions called $\boldsymbol{\epsilon}$-$\operatorname{SL}_2$-tilings. We show that, in each dimension 3 or greater, $\boldsymbol{\epsilon}$-$\operatorname{SL}_2$-tilings exist only for certain choices of $\boldsymbol{\epsilon}$. In the case that they exist, we show that they are essentially unique and have a concrete description in terms of odd Fibonacci numbers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/209479
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact