Let (R, m) be a Cohen-Macaulay local ring of positive dimension d, let I be an $ m - $ primary ideal of R. In this paper we individuate some conditions on I that allow us to determine a lower bound for depth $ {\text{gr}_I}(R)$. It is proved that if $ J \subseteq I$ is a minimal reduction of I such that $ \lambda ({I^2} \cap J/IJ) = 2$ and $ {I^n} \cap J = {I^{n - 1}}J$ for all $ n \geq 3$, then depth $ {\text{gr}_I}(R) \geq d - 2$; let us remark that $ \lambda $ denotes the length function.

On the depth of the associated graded ring

GUERRIERI, ANNA
1995-01-01

Abstract

Let (R, m) be a Cohen-Macaulay local ring of positive dimension d, let I be an $ m - $ primary ideal of R. In this paper we individuate some conditions on I that allow us to determine a lower bound for depth $ {\text{gr}_I}(R)$. It is proved that if $ J \subseteq I$ is a minimal reduction of I such that $ \lambda ({I^2} \cap J/IJ) = 2$ and $ {I^n} \cap J = {I^{n - 1}}J$ for all $ n \geq 3$, then depth $ {\text{gr}_I}(R) \geq d - 2$; let us remark that $ \lambda $ denotes the length function.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/21082
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact