The results reported in this paper are based on the analysis of the data recorded with the first half-module of the ICARUS T600 liquid argon Time Projection Chamber (LAr TPC), during a technical run that took place on surface in Pavia (Italy). We include results from the linearity, uniformity and calibration of the electronics, measurements on the electron drift velocity in LAr at different electric fields, as well as the LAr purity achievement of the detector. Two complementary techniques were used to measure the drift electron lifetime inside the active volume: the first, from the data of a purity monitor, gives a measurement localized in space; the second, based on the study of the signals produced by long minimum ionizing tracks crossing the detector, provides a LAr volume averaged value. Both methods yield consistent results over the whole data taking period and are compatible with an uniform LAr purity over the whole volume. The maximal drift electron lifetime value was recorded before the run stop and was about 1:8 ms: From an interpretation of the observed drift electron lifetime as a function of time, we conclude that the adopted technology would allow for drift distances exceeding 3 m:

Analysis of the liquid argon purity in the ICARUS T600 TPC

CAVANNA, FLAVIO
2004-01-01

Abstract

The results reported in this paper are based on the analysis of the data recorded with the first half-module of the ICARUS T600 liquid argon Time Projection Chamber (LAr TPC), during a technical run that took place on surface in Pavia (Italy). We include results from the linearity, uniformity and calibration of the electronics, measurements on the electron drift velocity in LAr at different electric fields, as well as the LAr purity achievement of the detector. Two complementary techniques were used to measure the drift electron lifetime inside the active volume: the first, from the data of a purity monitor, gives a measurement localized in space; the second, based on the study of the signals produced by long minimum ionizing tracks crossing the detector, provides a LAr volume averaged value. Both methods yield consistent results over the whole data taking period and are compatible with an uniform LAr purity over the whole volume. The maximal drift electron lifetime value was recorded before the run stop and was about 1:8 ms: From an interpretation of the observed drift electron lifetime as a function of time, we conclude that the adopted technology would allow for drift distances exceeding 3 m:
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/21644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 58
social impact