Metamorphic proteins are biomolecules prone to adopting alternative conformations. Because of this feature, they represent ideal systems to investigate the general rules allowing primary structure to dictate protein topology. A comparative molecular dynamics study was performed on the denatured states of two proteins, sharing nearly identical amino-acid sequences (88 %) but different topologies, namely an all-α-helical bundle protein named GA88 and an α+β-protein named GB88. The analysis allowed successful design of and experimental validation of a site-directed mutant that promotes, at least in part, the switch in folding from GB88 to GA88. The mutated position, in which a glutamic acid was replaced by a glutamine, does not make any intramolecular interactions in the native state of GA88, such that its stabilization can be explained by considering the effects on the denatured state. The results represent a direct demonstration of the role of the denatured state in sculpting native structure.

A Carboxylate to Amide Substitution That Switches Protein Folds

Malagrino F.;
2018-01-01

Abstract

Metamorphic proteins are biomolecules prone to adopting alternative conformations. Because of this feature, they represent ideal systems to investigate the general rules allowing primary structure to dictate protein topology. A comparative molecular dynamics study was performed on the denatured states of two proteins, sharing nearly identical amino-acid sequences (88 %) but different topologies, namely an all-α-helical bundle protein named GA88 and an α+β-protein named GB88. The analysis allowed successful design of and experimental validation of a site-directed mutant that promotes, at least in part, the switch in folding from GB88 to GA88. The mutated position, in which a glutamic acid was replaced by a glutamine, does not make any intramolecular interactions in the native state of GA88, such that its stabilization can be explained by considering the effects on the denatured state. The results represent a direct demonstration of the role of the denatured state in sculpting native structure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/216444
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact