Achieving end-to-end ultra-reliability and resiliency in mission critical communications is a major challenge for future wireless networks. Dual connectivity has been proposed by 3GPP as one of the viable solutions to fulfill the reliability requirements. However, the potential correlation in failures occurring over different wireless links is commonly neglected in current network design approaches. In this paper, we investigate the impact of realistic correlation among different wireless links on end-to-end reliability for two selected architectures from 3GPP. In ultra-reliable use-cases, we show that even small values of correlation can increase the end-to-end error rate by orders of magnitude. This may suggest alternative feasible architecture designs and paves the way towards serving ultra-reliable communications in 5G networks.
Impact of correlated failures in 5G dual connectivity architectures for URLLC applications
Di Marco P.;
2019-01-01
Abstract
Achieving end-to-end ultra-reliability and resiliency in mission critical communications is a major challenge for future wireless networks. Dual connectivity has been proposed by 3GPP as one of the viable solutions to fulfill the reliability requirements. However, the potential correlation in failures occurring over different wireless links is commonly neglected in current network design approaches. In this paper, we investigate the impact of realistic correlation among different wireless links on end-to-end reliability for two selected architectures from 3GPP. In ultra-reliable use-cases, we show that even small values of correlation can increase the end-to-end error rate by orders of magnitude. This may suggest alternative feasible architecture designs and paves the way towards serving ultra-reliable communications in 5G networks.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.