: Permanent magnets are fundamental constituents in key sectors such as energy and transport, but also robotics, automatization, medicine, etc. High-performance magnets are based on rare earth elements (RE), included in the European list of critical raw materials list. The volatility of their market increased the research over the past decade to develop RE-free magnets to fill the large performance/cost gap existing between ferrites and RE-based magnets. The improvement of hard ferrites and Mn-Al-C permanent magnets plays into this important technological role in the near future. The possible substitution advantage was widely discussed in the literature considering both magnetic properties and economic aspects. To evaluate further sustainability aspects, the present paper gives a life cycle assessment quantifying the environmental gain resulting from the production of RE-free magnets based on traditional hexaferrite and Mn-Al-C. The analysis quantified an advantage of both magnets that overcomes the 95% in all the considered impact categories (such as climate change, ozone depletion, human toxicity) compared to RE-based technologies. The benefit also includes the health and safety of working time aspects, proving possible reduction of worker risks by 3-12 times. The results represent the fundamentals for the development of green magnets that are able to significantly contribute to an effective sustainable transition.

Life Cycle Assessment of Rare Earth Elements-Free Permanent Magnet Alternatives: Sintered Ferrite and Mn-Al-C

Amato, Alessia;Innocenzi, Valentina;Vegliò, Francesco;Beolchini, Francesca
2023-01-01

Abstract

: Permanent magnets are fundamental constituents in key sectors such as energy and transport, but also robotics, automatization, medicine, etc. High-performance magnets are based on rare earth elements (RE), included in the European list of critical raw materials list. The volatility of their market increased the research over the past decade to develop RE-free magnets to fill the large performance/cost gap existing between ferrites and RE-based magnets. The improvement of hard ferrites and Mn-Al-C permanent magnets plays into this important technological role in the near future. The possible substitution advantage was widely discussed in the literature considering both magnetic properties and economic aspects. To evaluate further sustainability aspects, the present paper gives a life cycle assessment quantifying the environmental gain resulting from the production of RE-free magnets based on traditional hexaferrite and Mn-Al-C. The analysis quantified an advantage of both magnets that overcomes the 95% in all the considered impact categories (such as climate change, ozone depletion, human toxicity) compared to RE-based technologies. The benefit also includes the health and safety of working time aspects, proving possible reduction of worker risks by 3-12 times. The results represent the fundamentals for the development of green magnets that are able to significantly contribute to an effective sustainable transition.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/219741
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact