: Background and Objectives: Multiparametric magnetic resonance imaging (mpMRI) of the prostate and prostate-specific membrane antigen positron emission tomography (PSMA PET) are some examples of how the advancement of imaging techniques have revolutionized the diagnosis, staging, and consequently management of patients with prostate cancer (PCa). Although with less striking results, novel radiological modalities have also been proposed for bladder cancer (BCa) in recent years. Micro-ultrasound (MUS) is an imaging examination characterized by high real-time spatial resolution, recently introduced in the urological field. This article aimed to describe the current evidence regarding the application of MUS for the diagnosis and staging of PCa and BCa. Materials and Methods: We designed a narrative review. A comprehensive search in the MEDLINE, Scopus, and Cochrane Library databases was performed. Articles in English-language and published until July 2022 were deemed eligible. Retrospective and prospective primary clinical studies, as well as meta-analyses, were included. Results: MUS-guided prostate biopsy showed high sensitivity (0.91, 95% CI, 0.79-0.97) in the diagnosis of clinically significant PCa (csPCa). It was associated with a higher detection rate of csPCa than a systematic biopsy (1.18, 95% CI 0.83-1.68). No significant difference was found between MUS and mpMRI-guided biopsy in the total detection of PCa (p = 0.89) and in the detection of Grade Groups ≥ 2 (p = 0.92). The use of MUS to distinguish between non-muscle-invasive and muscle-invasive BCa was described, highlighting an up-staging with MUS only in a minority of cases (28.6%). Conclusions: Promising findings have emerged regarding the feasibility and accuracy of MUS in the diagnosis and staging of PCa and BCa. However, the available evidence is limited and should be considered preliminary.

Micro-Ultrasound in the Diagnosis and Staging of Prostate and Bladder Cancer: A Comprehensive Review

Pandolfo, Savio Domenico;
2022-01-01

Abstract

: Background and Objectives: Multiparametric magnetic resonance imaging (mpMRI) of the prostate and prostate-specific membrane antigen positron emission tomography (PSMA PET) are some examples of how the advancement of imaging techniques have revolutionized the diagnosis, staging, and consequently management of patients with prostate cancer (PCa). Although with less striking results, novel radiological modalities have also been proposed for bladder cancer (BCa) in recent years. Micro-ultrasound (MUS) is an imaging examination characterized by high real-time spatial resolution, recently introduced in the urological field. This article aimed to describe the current evidence regarding the application of MUS for the diagnosis and staging of PCa and BCa. Materials and Methods: We designed a narrative review. A comprehensive search in the MEDLINE, Scopus, and Cochrane Library databases was performed. Articles in English-language and published until July 2022 were deemed eligible. Retrospective and prospective primary clinical studies, as well as meta-analyses, were included. Results: MUS-guided prostate biopsy showed high sensitivity (0.91, 95% CI, 0.79-0.97) in the diagnosis of clinically significant PCa (csPCa). It was associated with a higher detection rate of csPCa than a systematic biopsy (1.18, 95% CI 0.83-1.68). No significant difference was found between MUS and mpMRI-guided biopsy in the total detection of PCa (p = 0.89) and in the detection of Grade Groups ≥ 2 (p = 0.92). The use of MUS to distinguish between non-muscle-invasive and muscle-invasive BCa was described, highlighting an up-staging with MUS only in a minority of cases (28.6%). Conclusions: Promising findings have emerged regarding the feasibility and accuracy of MUS in the diagnosis and staging of PCa and BCa. However, the available evidence is limited and should be considered preliminary.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/221888
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact