Magnetic materials exhibiting topological Dirac fermions are attracting significant attention for their promising technological potential in spintronics. In these systems, the combined effect of the spin-orbit coupling and magnetic order enables the realization of novel topological phases with exotic transport properties, including the anomalous Hall effect and magneto-chiral phenomena. Herein, we report experimental signature of topological Dirac antiferromagnetism in TaCoTe2 via angle-resolved photoelectron spectroscopy and first-principles density functional theory calculations. In particular, we find the existence of spin-orbit coupling-induced gaps at the Fermi level, consistent with the manifestation of a large intrinsic nonlinear Hall conductivity. Remarkably, we find that the latter is extremely sensitive to the orientation of the Néel vector, suggesting TaCoTe2 as a suitable candidate for the realization of non-volatile spintronic devices with an unprecedented level of intrinsic tunability. © 2023 American Chemical Society.

Discovery of a Magnetic Dirac System with a Large Intrinsic Nonlinear Hall Effect

Politano, A.
Supervision
;
2023-01-01

Abstract

Magnetic materials exhibiting topological Dirac fermions are attracting significant attention for their promising technological potential in spintronics. In these systems, the combined effect of the spin-orbit coupling and magnetic order enables the realization of novel topological phases with exotic transport properties, including the anomalous Hall effect and magneto-chiral phenomena. Herein, we report experimental signature of topological Dirac antiferromagnetism in TaCoTe2 via angle-resolved photoelectron spectroscopy and first-principles density functional theory calculations. In particular, we find the existence of spin-orbit coupling-induced gaps at the Fermi level, consistent with the manifestation of a large intrinsic nonlinear Hall conductivity. Remarkably, we find that the latter is extremely sensitive to the orientation of the Néel vector, suggesting TaCoTe2 as a suitable candidate for the realization of non-volatile spintronic devices with an unprecedented level of intrinsic tunability. © 2023 American Chemical Society.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/223404
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact