The deuterium NMR spectrum of benzene-d6 in a high field spectrometer (1 GHz protons) exhibits a magnetic field-induced deuterium quadrupolar splitting Δν. The magnitude of Δν observed for the central resonance is smaller than that observed for the 13C satellite doublets Δν′. This difference, Δ(Δν) = Δν′ - Δν, is due to unresolved fine structure contributions to the respective resonances. We determine the origins of and simulate this difference, and report pulse sequences that exploit the connectivity of the peaks in the 13C and 2H spectra to determine the relative signs of the indirect coupling, JCD, and Δν. The positive sign found for Δν is consonant with the magnetic field biasing of an isolated benzene molecule - the magnetic energy of the aromatic ring is lowest for configurations where the C6 axis is normal to the field. In the neat liquid the magnitude of Δν is decreased by the pair correlations in this prototypical molecular liquid.

Benzene at 1 GHz. Magnetic field-induced fine structure

Mamone S.;
2015-01-01

Abstract

The deuterium NMR spectrum of benzene-d6 in a high field spectrometer (1 GHz protons) exhibits a magnetic field-induced deuterium quadrupolar splitting Δν. The magnitude of Δν observed for the central resonance is smaller than that observed for the 13C satellite doublets Δν′. This difference, Δ(Δν) = Δν′ - Δν, is due to unresolved fine structure contributions to the respective resonances. We determine the origins of and simulate this difference, and report pulse sequences that exploit the connectivity of the peaks in the 13C and 2H spectra to determine the relative signs of the indirect coupling, JCD, and Δν. The positive sign found for Δν is consonant with the magnetic field biasing of an isolated benzene molecule - the magnetic energy of the aromatic ring is lowest for configurations where the C6 axis is normal to the field. In the neat liquid the magnitude of Δν is decreased by the pair correlations in this prototypical molecular liquid.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/225052
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact