Liposomes are promising drug carriers for a wide range of central nervous system disorders, such as Parkinson's disease (PD), since they can protect active substances from degradation and could be administered intranasally, ensuring a direct access to the brain. Levodopa (LD), the drug commonly used to treat PD, spontaneously oxidizes in aqueous solutions and thus needs to be stabilized. Our investigation focuses on the preparation and the physico-chemical characterization of mixed liposomes to vehiculate LD and two natural substances (L-ascorbic acid and quercetin) that can prevent its oxidation and contribute to the treatment of Parkinson's disease. These co-loaded vesicles were prepared using a saturated phospholipid and structurally related cationic or analogue Noxide surfactants and showed different properties, based on their composition. In particular, ex-vivo permeability tests using porcine nasal mucosa were performed, denoting that subtle variations of the lipids structure can significantly affect the delivery of LD to the target site.

Novel liposomal formulations for protection and delivery of levodopa: Structure-properties correlation

Allegritti, Elena;Battista, Sara;Giansanti, Luisa
2023-01-01

Abstract

Liposomes are promising drug carriers for a wide range of central nervous system disorders, such as Parkinson's disease (PD), since they can protect active substances from degradation and could be administered intranasally, ensuring a direct access to the brain. Levodopa (LD), the drug commonly used to treat PD, spontaneously oxidizes in aqueous solutions and thus needs to be stabilized. Our investigation focuses on the preparation and the physico-chemical characterization of mixed liposomes to vehiculate LD and two natural substances (L-ascorbic acid and quercetin) that can prevent its oxidation and contribute to the treatment of Parkinson's disease. These co-loaded vesicles were prepared using a saturated phospholipid and structurally related cationic or analogue Noxide surfactants and showed different properties, based on their composition. In particular, ex-vivo permeability tests using porcine nasal mucosa were performed, denoting that subtle variations of the lipids structure can significantly affect the delivery of LD to the target site.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/225700
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact