- Community search is the problem of finding a good community for a given set of query vertices. One of the most studied formulations of community search asks for a connected subgraph that contains all query vertices and maximizes the minimum degree. All existing approaches to min-degree-based community search suffer from limitations concerning efficiency, as they need to visit (large part of) the whole input graph, as well as accuracy, as they output communities quite large and not really cohesive. Moreover, some existing methods lack generality: they handle only single-vertex queries, find communities that are not optimal in terms of minimum degree, and/or require input parameters. In this work we advance the state of the art on community search by proposing a novel method that overcomes all these limitations: it is in general more efficient and effective—one/two orders of magnitude on average, it can handle multiple query vertices, it yields optimal communities, and it is parameter-free. These properties are confirmed by an extensive experimental analysis performed on various real-world graphs.

Efficient and effective community search

Gullo F
2015-01-01

Abstract

- Community search is the problem of finding a good community for a given set of query vertices. One of the most studied formulations of community search asks for a connected subgraph that contains all query vertices and maximizes the minimum degree. All existing approaches to min-degree-based community search suffer from limitations concerning efficiency, as they need to visit (large part of) the whole input graph, as well as accuracy, as they output communities quite large and not really cohesive. Moreover, some existing methods lack generality: they handle only single-vertex queries, find communities that are not optimal in terms of minimum degree, and/or require input parameters. In this work we advance the state of the art on community search by proposing a novel method that overcomes all these limitations: it is in general more efficient and effective—one/two orders of magnitude on average, it can handle multiple query vertices, it yields optimal communities, and it is parameter-free. These properties are confirmed by an extensive experimental analysis performed on various real-world graphs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/227852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 111
  • ???jsp.display-item.citation.isi??? ND
social impact