Background and Objective: In recent years, magnetic resonance imaging (MRI) has shown excellent results in the study of the prostate gland. MRI has indeed shown to be advantageous in the prostate cancer (PCa) detection, as in guiding targeting biopsy, improving its diagnostic yield. Although current acquisition protocols provide for multiparametric acquisition, recent evidence has shown that biparametric protocols can be non-inferior in PCa detection. Diffusion-weighted imaging (DWI) sequence, in particular, plays a key role, particularly in the peripheral zone which accounts for the larger part of the prostate. High b-values are generally recommended, although with the possibility of obtaining non-Gaussian diffusion effects, which requires a more sophisticated model for the analysis, namely through the diffusion kurtosis imaging (DKI). Purpose of this narrative review was to analyze the current applications and clinical evidence regarding the use of DKI with a main focus on PCa detection, also in comparison with DWI. Methods: This narrative review synthesized the findings of literature retrieved from main researches, narrative and systematic reviews, and meta-analyses obtained from PubMed. Key Content and Findings: DKI analyses the non-Gaussian water diffusivity and describe the effect of signal intensity decay related to high b-value through two main metrics (Dapp and Kapp). Differently from DWI-apparent diffusion coefficient (DWI-ADC) which reflects only water restriction outside of cells, DKI metrics are supposed to represent also the direct interaction of water molecules with cell membranes and intracellular compounds. This review describes current evidence on ADC and DKI metrics in clinical imaging, and finally collect the results derived from the main articles focused on DWI and DKI models in detecting PCa.

Diffusion kurtosis imaging and standard diffusion imaging in the magnetic resonance imaging assessment of prostate cancer

Palumbo, Pierpaolo;Martinese, Andrea;Antenucci, Maria Rosaria;Bruno, Federico;Di Cesare, Ernesto;
2023-01-01

Abstract

Background and Objective: In recent years, magnetic resonance imaging (MRI) has shown excellent results in the study of the prostate gland. MRI has indeed shown to be advantageous in the prostate cancer (PCa) detection, as in guiding targeting biopsy, improving its diagnostic yield. Although current acquisition protocols provide for multiparametric acquisition, recent evidence has shown that biparametric protocols can be non-inferior in PCa detection. Diffusion-weighted imaging (DWI) sequence, in particular, plays a key role, particularly in the peripheral zone which accounts for the larger part of the prostate. High b-values are generally recommended, although with the possibility of obtaining non-Gaussian diffusion effects, which requires a more sophisticated model for the analysis, namely through the diffusion kurtosis imaging (DKI). Purpose of this narrative review was to analyze the current applications and clinical evidence regarding the use of DKI with a main focus on PCa detection, also in comparison with DWI. Methods: This narrative review synthesized the findings of literature retrieved from main researches, narrative and systematic reviews, and meta-analyses obtained from PubMed. Key Content and Findings: DKI analyses the non-Gaussian water diffusivity and describe the effect of signal intensity decay related to high b-value through two main metrics (Dapp and Kapp). Differently from DWI-apparent diffusion coefficient (DWI-ADC) which reflects only water restriction outside of cells, DKI metrics are supposed to represent also the direct interaction of water molecules with cell membranes and intracellular compounds. This review describes current evidence on ADC and DKI metrics in clinical imaging, and finally collect the results derived from the main articles focused on DWI and DKI models in detecting PCa.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/229539
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact