Cardiovascular diseases still represent one of the most deadly pathologies worldwide. Knowledge of the blood flow dynamics within the cardio-vascular system is crucial in preventing these diseases and analysing their physiology and physio-pathology. CFD simulations are highly effective in guiding clinical predictions and, more importantly, allow the evaluation of physical and clinical parameters that are difficult to measure with common diagnostic techniques. Therefore, in particular, this study is focused on investigating the hemodynamics of the thoracic aorta. Real aortic geometries regarding a sane and diseased patient presenting an aneurysm were considered. CFD simulations were performed with the OpenFOAM C++ library using patient-specific pulsatile blood flow waveforms and implementing the Windkessel pressure boundary condition for the artery outflow. The adopted methodology was preliminarily verified for assessing the numerical uncertainty and convergence. Then, the CFD results were evaluated against experimental data concerning pressure and velocity of the thoracic aorta measured with standard diagnostic techniques. The normal aorta's blood flow was also compared against the pattern regarding the patient-specific aortic aneurysm. Parameters such as wall pressure, wall shear stress (WSS) and velocity distribution were investigated and discussed. The research highlighted that the blood flow in the aorta is strongly affected by the aneurysm onset, with the growth of recirculation zones being potentially hazardous. The outcomes of the investigation finally demonstrate how CFD simulation tools, capturing the detailed physics of the aortic flow, are powerful tools for supporting clinical activities of the cardio-vascular system.

Blood Flow Simulation of Aneurysmatic and Sane Thoracic Aorta Using OpenFOAM CFD Software

Duronio, Francesco
;
Di Mascio, Andrea
2023-01-01

Abstract

Cardiovascular diseases still represent one of the most deadly pathologies worldwide. Knowledge of the blood flow dynamics within the cardio-vascular system is crucial in preventing these diseases and analysing their physiology and physio-pathology. CFD simulations are highly effective in guiding clinical predictions and, more importantly, allow the evaluation of physical and clinical parameters that are difficult to measure with common diagnostic techniques. Therefore, in particular, this study is focused on investigating the hemodynamics of the thoracic aorta. Real aortic geometries regarding a sane and diseased patient presenting an aneurysm were considered. CFD simulations were performed with the OpenFOAM C++ library using patient-specific pulsatile blood flow waveforms and implementing the Windkessel pressure boundary condition for the artery outflow. The adopted methodology was preliminarily verified for assessing the numerical uncertainty and convergence. Then, the CFD results were evaluated against experimental data concerning pressure and velocity of the thoracic aorta measured with standard diagnostic techniques. The normal aorta's blood flow was also compared against the pattern regarding the patient-specific aortic aneurysm. Parameters such as wall pressure, wall shear stress (WSS) and velocity distribution were investigated and discussed. The research highlighted that the blood flow in the aorta is strongly affected by the aneurysm onset, with the growth of recirculation zones being potentially hazardous. The outcomes of the investigation finally demonstrate how CFD simulation tools, capturing the detailed physics of the aortic flow, are powerful tools for supporting clinical activities of the cardio-vascular system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/230200
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact