The nitrogen–hybridization/pyramidalization of two solvated N-tosylisoindolinone derivatives having chiral residues in adjacent (I) or adjacent and distal (II) position has been investigated by a theoretical-computational procedure based on Molecular Dynamics simulations and Quantum–Chemical calculations. After validation of our methodology in providing a reliable repertory of conformations by modeling the electronic circular dichroism (EDC) spectra, the electronic features associated with N-pyramidalization were further characterized through Natural Bond Order (NBO) analysis. Comparing against the N-geometry observed in crystal structures as a reference, our findings reveal that the presence of neighbouring chiral centers induces a more pronounced N-pyramidalization in solution than in the solid state, both in I and II. Furthermore, NBO analysis confirms that the N-lactam mostly retains the sp2 character but exhibits slight configurational distortion (ξI=13°; ξII=21°), which significantly influences the chiroptical activities observed in ECD spectra of I and II. This substantiates the N-lactams as configurationally stable chiral centers.

Unrevealing the Nitrogen Elusive Chirality of 3-Sulfanyl and 3-Sulfinyl N-Tosyl Isoindolinones by ECD Spectra: an Experimental and Theoretical Investigation

Palombi L.
;
Monti M.;Morlacci V.;Aschi M.
2024-01-01

Abstract

The nitrogen–hybridization/pyramidalization of two solvated N-tosylisoindolinone derivatives having chiral residues in adjacent (I) or adjacent and distal (II) position has been investigated by a theoretical-computational procedure based on Molecular Dynamics simulations and Quantum–Chemical calculations. After validation of our methodology in providing a reliable repertory of conformations by modeling the electronic circular dichroism (EDC) spectra, the electronic features associated with N-pyramidalization were further characterized through Natural Bond Order (NBO) analysis. Comparing against the N-geometry observed in crystal structures as a reference, our findings reveal that the presence of neighbouring chiral centers induces a more pronounced N-pyramidalization in solution than in the solid state, both in I and II. Furthermore, NBO analysis confirms that the N-lactam mostly retains the sp2 character but exhibits slight configurational distortion (ξI=13°; ξII=21°), which significantly influences the chiroptical activities observed in ECD spectra of I and II. This substantiates the N-lactams as configurationally stable chiral centers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/230419
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact