The nitrogen–hybridization/pyramidalization of two solvated N-tosylisoindolinone derivatives having chiral residues in adjacent (I) or adjacent and distal (II) position has been investigated by a theoretical-computational procedure based on Molecular Dynamics simulations and Quantum–Chemical calculations. After validation of our methodology in providing a reliable repertory of conformations by modeling the electronic circular dichroism (EDC) spectra, the electronic features associated with N-pyramidalization were further characterized through Natural Bond Order (NBO) analysis. Comparing against the N-geometry observed in crystal structures as a reference, our findings reveal that the presence of neighbouring chiral centers induces a more pronounced N-pyramidalization in solution than in the solid state, both in I and II. Furthermore, NBO analysis confirms that the N-lactam mostly retains the sp2 character but exhibits slight configurational distortion (ξI=13°; ξII=21°), which significantly influences the chiroptical activities observed in ECD spectra of I and II. This substantiates the N-lactams as configurationally stable chiral centers.
Unrevealing the Nitrogen Elusive Chirality of 3-Sulfanyl and 3-Sulfinyl N-Tosyl Isoindolinones by ECD Spectra: an Experimental and Theoretical Investigation
Palombi L.
;Monti M.;Morlacci V.;Aschi M.
2024-01-01
Abstract
The nitrogen–hybridization/pyramidalization of two solvated N-tosylisoindolinone derivatives having chiral residues in adjacent (I) or adjacent and distal (II) position has been investigated by a theoretical-computational procedure based on Molecular Dynamics simulations and Quantum–Chemical calculations. After validation of our methodology in providing a reliable repertory of conformations by modeling the electronic circular dichroism (EDC) spectra, the electronic features associated with N-pyramidalization were further characterized through Natural Bond Order (NBO) analysis. Comparing against the N-geometry observed in crystal structures as a reference, our findings reveal that the presence of neighbouring chiral centers induces a more pronounced N-pyramidalization in solution than in the solid state, both in I and II. Furthermore, NBO analysis confirms that the N-lactam mostly retains the sp2 character but exhibits slight configurational distortion (ξI=13°; ξII=21°), which significantly influences the chiroptical activities observed in ECD spectra of I and II. This substantiates the N-lactams as configurationally stable chiral centers.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.