In the present work, we classify sets of type (4,n) in PG(3,q). We prove that PG(3,q), apart from the planes of PG(3,3), contains only sets of type (4,n) with standard parameters. Thus, somewhat surprisingly, we conclude that there are no sets of type (4,n) in PG(3,q), q ̸= 3, with nonstandard parameters.
Classifying sets of type (4,n) in PG(3,q)
Stefano Innamorati
2024-01-01
Abstract
In the present work, we classify sets of type (4,n) in PG(3,q). We prove that PG(3,q), apart from the planes of PG(3,3), contains only sets of type (4,n) with standard parameters. Thus, somewhat surprisingly, we conclude that there are no sets of type (4,n) in PG(3,q), q ̸= 3, with nonstandard parameters.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
foundations-04-00017.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
246.19 kB
Formato
Adobe PDF
|
246.19 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.