In the present work, we classify sets of type (4,n) in PG(3,q). We prove that PG(3,q), apart from the planes of PG(3,3), contains only sets of type (4,n) with standard parameters. Thus, somewhat surprisingly, we conclude that there are no sets of type (4,n) in PG(3,q), q ̸= 3, with nonstandard parameters.

Classifying sets of type (4,n) in PG(3,q)

Stefano Innamorati
2024-01-01

Abstract

In the present work, we classify sets of type (4,n) in PG(3,q). We prove that PG(3,q), apart from the planes of PG(3,3), contains only sets of type (4,n) with standard parameters. Thus, somewhat surprisingly, we conclude that there are no sets of type (4,n) in PG(3,q), q ̸= 3, with nonstandard parameters.
File in questo prodotto:
File Dimensione Formato  
foundations-04-00017.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 246.19 kB
Formato Adobe PDF
246.19 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/232959
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact