Brevibacterium imperialis CBS 489-74 was grown in broths prepared with yeast and malt extract, bacteriological peptone and 2% glucose or differently modified with the addition of Na-phosphate buffer, FeSO4, MgSO4 and CoCl2. The peak production of nitrile hydratase (NHase) did not change significantly. At the stationary growth phase, the units per milliliter of broth (60 units ml−1) were more important than those at the exponential growth phase. The NHase operational stability of whole resting cells was monitored following the bioconversion of acrylonitrile to acrylamide in continuous and stirred UF-membrane reactors. The rate of inactivation was independent on buffer molarity from 25 to 75 mM and on pH from 5.8 to 7.4. Enzyme stability and activity remained unchanged in distilled water. The initial reaction rate increased from 12.8 to 23.8 g acrylamide/g dry cell/h, but NHase half-life dropped from 33 to roughly 7 h when temperature was varied from 4°C to 10°C. The addition of butyric acid up to 20 mM did not improve enzyme operational stability, and largely reduced (94%) enzyme activity. Acrylonitrile caused an irreversible damage to NHase activity. High acrylonitrile conversion (86%) was attained using 0.23 mg cells/ml in a continuously operating reactor.

Operational stability of Brevibacterium imperialis CBS 489-74 nitrile hydratase

CANTARELLA, Maria;
2001-01-01

Abstract

Brevibacterium imperialis CBS 489-74 was grown in broths prepared with yeast and malt extract, bacteriological peptone and 2% glucose or differently modified with the addition of Na-phosphate buffer, FeSO4, MgSO4 and CoCl2. The peak production of nitrile hydratase (NHase) did not change significantly. At the stationary growth phase, the units per milliliter of broth (60 units ml−1) were more important than those at the exponential growth phase. The NHase operational stability of whole resting cells was monitored following the bioconversion of acrylonitrile to acrylamide in continuous and stirred UF-membrane reactors. The rate of inactivation was independent on buffer molarity from 25 to 75 mM and on pH from 5.8 to 7.4. Enzyme stability and activity remained unchanged in distilled water. The initial reaction rate increased from 12.8 to 23.8 g acrylamide/g dry cell/h, but NHase half-life dropped from 33 to roughly 7 h when temperature was varied from 4°C to 10°C. The addition of butyric acid up to 20 mM did not improve enzyme operational stability, and largely reduced (94%) enzyme activity. Acrylonitrile caused an irreversible damage to NHase activity. High acrylonitrile conversion (86%) was attained using 0.23 mg cells/ml in a continuously operating reactor.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/23479
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact