In cranioplasty surgery, achieving an effective aesthetic shape restoration of the cranial vault is the most important issue to ensure a proper outcome in terms of social and psychological benefits for the patient. To date, the most advanced approach uses CT/MRI data to reconstruct, in a pre-operative stage, the 3D anatomy of the defective skull in order to design a patient-specific prosthesis. In the last years, several techniques have been proposed to improve the applicability of such approach in the clinical practice, but the analysis of the related literature shows still open issues, due to the wide anatomical variability and complexity of the craniofacial anatomy that needs to be retrieved. With the aim to overcome the State-of-the-Art drawbacks, a new semi-automatic hybrid procedure for repairing unilateral or quasi-unilateral (i.e. a single defect slightly passing the sagittal plane) cranial defects is presented. The novel approach is hybrid because a surface interpolation for filling the hole is used together with a template-based reconstruction guided by the healthy counterpart. The procedure, being landmark-independent and avoiding any patch adaptation, represents a valid alternative for the existing approaches also in terms of user's burden, requiring less time consuming and less cumbersome operations. In addition, a new evaluating technique able to measure the symmetry of the reconstruction as well as the continuity between patch and healthy bone is proposed to test the procedure performance. Several test cases have been then addressed to prove the effectiveness and repeatability of the proposed procedure in reconstructing large-size defects of the skull.

A Semi-Automatic Hybrid Approach for Defective Skulls Reconstruction

Antonio Marzola
;
2020-01-01

Abstract

In cranioplasty surgery, achieving an effective aesthetic shape restoration of the cranial vault is the most important issue to ensure a proper outcome in terms of social and psychological benefits for the patient. To date, the most advanced approach uses CT/MRI data to reconstruct, in a pre-operative stage, the 3D anatomy of the defective skull in order to design a patient-specific prosthesis. In the last years, several techniques have been proposed to improve the applicability of such approach in the clinical practice, but the analysis of the related literature shows still open issues, due to the wide anatomical variability and complexity of the craniofacial anatomy that needs to be retrieved. With the aim to overcome the State-of-the-Art drawbacks, a new semi-automatic hybrid procedure for repairing unilateral or quasi-unilateral (i.e. a single defect slightly passing the sagittal plane) cranial defects is presented. The novel approach is hybrid because a surface interpolation for filling the hole is used together with a template-based reconstruction guided by the healthy counterpart. The procedure, being landmark-independent and avoiding any patch adaptation, represents a valid alternative for the existing approaches also in terms of user's burden, requiring less time consuming and less cumbersome operations. In addition, a new evaluating technique able to measure the symmetry of the reconstruction as well as the continuity between patch and healthy bone is proposed to test the procedure performance. Several test cases have been then addressed to prove the effectiveness and repeatability of the proposed procedure in reconstructing large-size defects of the skull.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/241977
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact