In this paper we prove existence of solutions to Schrödinger-Maxwell type systems involving mixed local-nonlocal operators. Two different models are considered: classical Schrödinger-Maxwell equations and Schrödinger-Maxwell equations with a coercive potential, and the main novelty is that the nonlocal part of the operator is allowed to be nonpositive definite according to a real parameter. We then provide a range of parameter values to ensure the existence of solitary standing waves, obtained as Mountain Pass critical points for the associated energy functionals.

Schrödinger-Maxwell equations driven by mixed local-nonlocal operators

Maicol Caponi;
2024-01-01

Abstract

In this paper we prove existence of solutions to Schrödinger-Maxwell type systems involving mixed local-nonlocal operators. Two different models are considered: classical Schrödinger-Maxwell equations and Schrödinger-Maxwell equations with a coercive potential, and the main novelty is that the nonlocal part of the operator is allowed to be nonpositive definite according to a real parameter. We then provide a range of parameter values to ensure the existence of solitary standing waves, obtained as Mountain Pass critical points for the associated energy functionals.
File in questo prodotto:
File Dimensione Formato  
s13540-024-00251-x.pdf

accesso aperto

Descrizione: Published version
Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 507.03 kB
Formato Adobe PDF
507.03 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/242043
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact