In the production and packaging of silicone sealants, entrapped air, impurities, and foreign particles can introduce defects affecting performance. This study utilizes three ultrasonic non-destructive testing techniques: contact-based, angle-beam, and through-transmission testing, to identify defects and generate 3D images. The scanning process takes vertical A-scan measurements across the sample and rotates it at predetermined angles for comprehensive coverage. The contact-based technique uses the time-of-flight principle to determine defect locations, but struggles with defects aligned perpendicular and experiences signal reduction. The angle-beam method identifies defects in areas previously out of reach, but the slow sound movement in sealants can hinder capturing specific signals. While through-transmission offers enhanced signal clarity and an improved signal-to-noise ratio, pinpointing the defect's exact depth is challenging. By combining these methods, the study reconstructs a more accurate three-dimensional image which visualizes the defective region.
Silicone sealant defect detection via 3D image reconstruction from multiple ultrasonic sensors
Sfarra, Stefano;
2024-01-01
Abstract
In the production and packaging of silicone sealants, entrapped air, impurities, and foreign particles can introduce defects affecting performance. This study utilizes three ultrasonic non-destructive testing techniques: contact-based, angle-beam, and through-transmission testing, to identify defects and generate 3D images. The scanning process takes vertical A-scan measurements across the sample and rotates it at predetermined angles for comprehensive coverage. The contact-based technique uses the time-of-flight principle to determine defect locations, but struggles with defects aligned perpendicular and experiences signal reduction. The angle-beam method identifies defects in areas previously out of reach, but the slow sound movement in sealants can hinder capturing specific signals. While through-transmission offers enhanced signal clarity and an improved signal-to-noise ratio, pinpointing the defect's exact depth is challenging. By combining these methods, the study reconstructs a more accurate three-dimensional image which visualizes the defective region.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.