We propose a general strategy for solving nonlinear integro-differential evolution problems with periodic boundary conditions, where no direct maximum/minimum principle is available. This is motivated by the study of recent macroscopic models for active Brownian particles with repulsive interactions, consisting of advection-diffusion processes in the space of particle position and orientation. We focus on one of such models, namely a semilinear parabolic equation with a nonlinear active drift term, whereby the velocity depends on the particle orientation and angle-independent overall particle density (leading to a nonlocal term by integrating out the angular variable). The main idea of the existence analysis is to exploit a priori estimates from (approximate) entropy dissipation. The global existence and uniqueness of weak solutions is shown using a two-step Galerkin approximation with appropriate cutoff in order to obtain nonnegativity, an upper bound on the overall density, and preserve a priori estimates. Our analysis naturally includes the case of finite systems, corresponding to the case of a finite number of directions. The Duhamel principle is then used to obtain additional regularity of the solution, namely continuity in time-space. Motivated by the class of initial data relevant for the application, which includes perfectly aligned particles (same orientation), we extend the well-posedness result to very weak solutions allowing distributional initial data with low regularity.

WELL-POSEDNESS OF AN INTEGRO-DIFFERENTIAL MODEL FOR ACTIVE BROWNIAN PARTICLES

Esposito A.
;
2022-01-01

Abstract

We propose a general strategy for solving nonlinear integro-differential evolution problems with periodic boundary conditions, where no direct maximum/minimum principle is available. This is motivated by the study of recent macroscopic models for active Brownian particles with repulsive interactions, consisting of advection-diffusion processes in the space of particle position and orientation. We focus on one of such models, namely a semilinear parabolic equation with a nonlinear active drift term, whereby the velocity depends on the particle orientation and angle-independent overall particle density (leading to a nonlocal term by integrating out the angular variable). The main idea of the existence analysis is to exploit a priori estimates from (approximate) entropy dissipation. The global existence and uniqueness of weak solutions is shown using a two-step Galerkin approximation with appropriate cutoff in order to obtain nonnegativity, an upper bound on the overall density, and preserve a priori estimates. Our analysis naturally includes the case of finite systems, corresponding to the case of a finite number of directions. The Duhamel principle is then used to obtain additional regularity of the solution, namely continuity in time-space. Motivated by the class of initial data relevant for the application, which includes perfectly aligned particles (same orientation), we extend the well-posedness result to very weak solutions allowing distributional initial data with low regularity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/244203
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact