We show that degenerate nonlinear diffusion equations can be asymptotically obtained as a limit from a class of nonlocal partial differential equations. The nonlocal equations are obtained as gradient flows of interaction-like energies approximating the internal energy. We construct weak solutions as the limit of a (sub)sequence of weak measure solutions by using the Jordan-Kinderlehrer-Otto scheme from the context of 2-Wasserstein gradient flows. Our strategy allows to cover the porous medium equation, for the general slow diffusion case, extending previous results in the literature. As a byproduct of our analysis, we provide a qualitative particle approximation.

Nonlocal approximation of nonlinear diffusion equations

Esposito A.
;
2024-01-01

Abstract

We show that degenerate nonlinear diffusion equations can be asymptotically obtained as a limit from a class of nonlocal partial differential equations. The nonlocal equations are obtained as gradient flows of interaction-like energies approximating the internal energy. We construct weak solutions as the limit of a (sub)sequence of weak measure solutions by using the Jordan-Kinderlehrer-Otto scheme from the context of 2-Wasserstein gradient flows. Our strategy allows to cover the porous medium equation, for the general slow diffusion case, extending previous results in the literature. As a byproduct of our analysis, we provide a qualitative particle approximation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/244205
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact